

CHIPPER SEGMENTS AND SIZING RINGS

The same quality parameters as for our tried and tested circular saw blades also apply to chipper segments and sizing rings. Only high-quality tool steels are used, ensuring the segments and sizing rings feature the required stability. Of course they can also be regenerated.
They are manufactured conventionally with straight saw body, same as our BASIC circular saw blades, or with gradation and thinner blade at the tooth area.
b Saw body thickness. BST Collar thickness. D Diameter. d Bore NL Pin hole . PL Fit hole . SF Kerf. SL Countersunk hole

$\stackrel{\text { BST }}{ }$

Dimensions: $\mathrm{D} \times \mathrm{SF} / \mathrm{b} / \mathrm{BST} \times \mathrm{d}$

CHIPPER SEGMENTS AND SIZING RINGS

Chipper segments and sizing rings

(L) left and/or R right

TCT-Sizing ring for HewSaw
$345 \times 5.0 / 4.0 / 10.7 \times 144 \mathrm{~mm}, \mathrm{Z} 36$
AST: from $\varnothing 276 \mathrm{~mm}$ one side grada-
tion to 4.0 mm ,
10 threaded holes M16

HDS-No. 24200 R
HDS-No. 24199 L

R
(L)

5.8/5.0 x 450 mm, Z22

6 countersunk holes 16 mm
both sides

TCT-Sizing ring for SAB

$480 \times 5.0 / 4.0 / 6.0 \times 330 \mathrm{~mm}, \mathrm{Z} 60$
AST: from $\varnothing 400 \mathrm{~mm}$ one side gradation to $4.0 \mathrm{~mm}, 18$ countersunk holes 11 mm one side

HDS-No. 16939 R
HDS-No. 16938 L

TCT-Sizing ring for EWD

$555 \times 6.2 / 5.0 \times 450 \mathrm{~mm}$, Z19
6 countersunk holes 16 mm both sides

HDS-No. 11664

R

R

HDS-No. 11033 R
HDS-No. 11034 L
TCT-Sizing ring for Linck
$850.5 \times 4.5 / 3.5 \times 697.04 \mathrm{~mm}$, Z13
17 countersunk holes 11 mm
one side, 3 pin holes 20 mm

HDS-No. 15549 R
HDS-No. 15547 L
TCT-Sizing ring for Linck
$570 \times 4.5 / 3.5 \times 430 \mathrm{~mm}$, Z12
19 countersunk holes 11 mm one side, 3 pin holes 19 mm

HDS-No. 17227 R
HDS-No. 17226 L

TCT-Sizing ring for Linck

$728 \times 4.5 / 3.5 \times 590 \mathrm{~mm}$, Z14
18 countersunk holes 11.5 mm one side, 4 pin holes 20 mm
-

HDS-No. 10547

TCT-Sizing ring for SAB

$630 \times 4.0 / 3.0 / 6.0 \times 480 \mathrm{~mm}, \mathrm{Z72}$
AST: from $\varnothing 550 \mathrm{~mm}$ one side gradation to $3.0 \mathrm{~mm}, 18$ countersunk holes 11 mm one side

HDS-No. 18220 R
HDS-No. 18219 L

TCT-Sizing ring for Linck

$850 \times 4.5 / 3.5 / 6.0 \times 695 \mathrm{~mm}, \mathrm{Z78}$
AST: from $\varnothing 804 \mathrm{~mm}$ one side gradation to $3.5 \mathrm{~mm}, 30$ countersunk holes, 18 pin holes

HDS-No. 11744 R
HDS-No. 11743 L

TCT-Sizing ring for Linck

$858 \times 4.5 / 3.5 / 7.4 \times 695 \mathrm{~mm}, \mathrm{Z} 60$
AST: from $\varnothing 804 \mathrm{~mm}$ one side gradation to $3.5 \mathrm{~mm}, 36$ countersunk holes, 15 pin holes

HDS-No. 11364 R
HDS-No. 11363 L

SoWa Sawmill Optimised Tool Design

All HDS-Sawmill Tools pass through our "SoWa Sawmill Optimised Tool Design". Your chipper segments and sizing rings therefore precisely match the application in your sawmill. In addition, once we have designed and manufactured sawmill tools for you, manufacturing in the future can be automated and reproducible with the same quality.

CUTTER SEGMENTS AND SIZING CUTTERS

We supply HDS cutter segments with straight saw body or gradation style with the blade thinner at the tooth area. Of course all segments are designed and manufactured to our strict quality parameters.
Once your cutter segments manufactured for you have been added to our database, we can supply you with segments at any time, automated and with reproducible quality. We therefore guarantee outstanding and consistent product quality.

BST

CUTTER SEGMENTS AND SIZING CUTTERS

Cutter segments and sizing cutters

R 0 top right and $\langle\square$ bottom left $R\rangle$ bottom right and $\Delta \square$ top left

CUTTER SEGMENTS AND SIZING CUTTERS

Cutter segments and sizing cutters

$R\rangle$ top right and $L \square$ bottom left $R\rangle U$ bottom right and $\Delta \square$ top left

	TCT-Cutter segment for Linck $415 \times 4.5 / 3.5 / 9.0 \times 210 \mathrm{~mm}, \mathrm{Z11}$ AST: from Ø 354.6 mm one side graduated to 3.5 mm , 5 pin holes 9 mm one side flat countersink Reinforced version! HDS-No. 22202 RU/LO HDS-No. 22203 RO/LU		TCT-Cutter segment for Linck $415 \times 3.5 / 2.5 / 7.0 \times 202 \mathrm{~mm}, \mathrm{Z} 24$ AST: from $\varnothing 370 \mathrm{~mm}$ one side graduated to $2.5 \mathrm{~mm}, 18$ pin holes 9 mm one side flat countersink Reinforced version! HDS-No. 28650 RO/LU HDS-No. 28651 RU/LO
10	TCT-Cutter segment for Linck $497 \times 3.5 / 2.5 / 8.0 \times 200.4 \mathrm{~mm}$, Z8 AST: from $\varnothing 446 \mathrm{~mm}$ one side graduated to $2.5 \mathrm{~mm}, 4$ pin holes 13.5 mm HDS-No. 10031 RU/LO HDS-No. 10030 RO/LU		TCT-Cutter segment for Linck $497 \times 3.5 / 2.5 / 8.0 \times 200.4 \mathrm{~mm}$, Z8 AST: from $\varnothing 446 \mathrm{~mm}$ one side graduated to $2.5 \mathrm{~mm}, 4$ pin holes 13.5 mm , of which 1 one side flat countersink HDS-No. 16650 RU/LO HDS-No. 16649 RO/LU
L 0	TCT-Cutter segment for Linck $499 \times 3.5 / 2.5 / 7.0 \times 232 \mathrm{~mm}, \mathrm{Z10}$ AST: from $\varnothing 446 \mathrm{~mm}$ one side graduated to 2.5 mm , 5 pin holes 9 mm one side flat countersink HDS-No. 14224 RU/LO HDS-No. 14223 RO/LU		TCT-Cutter segment for Linck $501 \times 3.5 / 2.5 / 8.0 \times 200.4 \mathrm{~mm}, \mathrm{Z} 10$ AST: from $\varnothing 438.6 \mathrm{~mm}$ one side graduated to $2.5 \mathrm{~mm}, 6$ pin holes 9 mm , of which 1 one side flat countersink HDS-No. 17223 RU/LO HDS-No. 17222 RO/LU
L 0 R U	TCT-Cutter segment for Linck $501 \times 4.5 / 3.5 / 9.0 \times 200.4 \mathrm{~mm}$, Z10 AST: from $\varnothing 438.6 \mathrm{~mm}$ one side graduated to $3.5 \mathrm{~mm}, 6$ pin holes 9 mm , of which 1 one side flat countersink Reinforced version! HDS-No. 22204 RU/LO HDS-No. 22205 RO/LU		TCT-Cutter segment for Linck $566 \times 5.0 / 4.0 \times 160 \mathrm{~mm}, \mathrm{Z} 27$ 4 pin holes 46 mm , 4 pin holes 25 mm HDS-No. 28649 RU/LO + RO/LU
	TCT-Cutter segment for Linck $566 \times 5.0 / 4.0 \times 160 \mathrm{~mm}$, Z36 4 pin holes 46 mm , 6 pin holes 22 mm HDS-No. 19202 RU/LO + RO/LU		TCT-Cutter segment for Linck $566 \times 5.0 / 4.0 / 6.0 \times 160 \mathrm{~mm}, \mathrm{Z} 36$ AST: from $\varnothing 490 \mathrm{~mm}$ one side graduated to $4 \mathrm{~mm}, 4$ pin holes 46 mm , 6 pin holes 22 mm Reinforced version! HDS-No. 25088 RO/LU HDS-No. 25089 RU/LO

SoWa Sawmill Optimised Tool Design

All HDS-Sawmill Tools pass through our "SoWa Sawmill Optimised Tool Design". Your cutter segments and sizing cutters therefore precisely match the application in your sawmill. In addition, once we have designed and manufactured sawmill tools for you, manufacturing in the future can be automated and reproducible with the same quality.

REGENERATION

A second life for your used sawmill tools

Used doesn't mean used up, since your sawmill tool can often be repaired or regenerated, which is much more economical compared to a new purchase.
Sawmill tools can be repaired to HDS quality standards straight at our factory. For particularly high quality circular saw blades, segments and sizing rings, usually equipped with a particularly robust "AST Graduated Saw Blade Technology" core, complete
regeneration is usually wise and offers great economic benefits. This process can be repeated several times, increasing the life of your sawmill tool by x-fold.
Let us repair or regenerate your sawmill tool. In most cases this will delay a new purchase and we will return your "used ones" like new!

